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Stress transfer by shear in carbon fibre model 
composites 
Part 2 Computer simulation of the fragmentation test 

J . -P .  FAVRE, P. SIGETY, D. J A C Q U E S  
Office National d'Etudes et Recherches Aerospatiales BP 72, 92322-Ch#tillon Cedex, France 

A simulation of the fragmentation process experienced by a single fibre embedded in a resin matrix 
specimen loaded in tension is presented. The model is based on a combination of two successive 
regimes of stress building at the fragment extremities, namely elastic stress transfer and friction, 
and assumes the pull-out strength as the debonding criterion. The computed ultimate fragment 
length and interfacial transfer shear stress are compared with the experimental results. 

1. I n t r o d u c t i o n  
It was established in Part 1 [1] that the interfacial 
shear stress z m that can be calculated from fragmenta- 
tion tests of a single fibre embedded in a resin tensile 
specimen is sensitive to the fibre surface treatment in 
addition to both the resin Young's modulus and the 
fibre properties. Instead of simply giving the ultimate 
shear strength as other single fibre tests (pull-out or 
curved-neck compression specimens) do, the fibre and 
the matrix are both involved as they actually are in 
composites but in a rather simplified way, without 
fibre-fibre interactions. What is tested is thus the 
ability of the whole system (fibre + matrix + inter- 
face) to transfer stresses. Indeed, for fixed fibre and 
matrix, this ability depends on the interface quality 
which explains the wide use of the technique for fibre 
surface treatments or sizings comparison. 

Modelizations of the fragmentation process, an in- 
termediate step to the comprehensive description of 
the unidirectional composite rupture process, have 
been proposed by Fraser et al. [2~,]  or Ochiai and 
Osamura [5, 6]. 

In Fraser's work, the determination of the inter- 
facial shear strength ~ is the result of an optimization 
procedure intended to put the theoretical and experi- 
mental critical aspect ratio distributions in agreement 
with each other. The theoretical distributions are 
based upon a stochastic fracture process of the fibre 
considered as a chain of links with a bimodal strength 
distribution. Optimization is needed because two 
parameters are to be evaluated at the same time: the 
"effective interfacial shear strength" �9 which is 
a measure of the interface ability to transfer stresses 
and the "distance between severe flaws on the fibre". 
The latter may change from one fibre treatment to 
another as fibres are supposed to be more or less 
protected according to the treatment. 

For Fraser, z is supposed to vary between 0 and the 
shear yield stress of the matrix, estimated from the 
tensile properties of the plain matrix using the Von 

Mises criterion. According to the Kelly-Tyson shear- 
lag analysis [7], stress transfer takes place at constant 
shear stress. No indication is given by the authors of 
how far the results of the optimization method are 
when compared with the rough application of the 
Kelly-Tyson equilibrium equation: the former is more 
accurate according to DiBenedetto [8]. 

Miwa et al. [11] have the same approach but they 
always keep the elementary link of their fibre chain 
longer than the smallest broken fibre piece so that the 
strength distribution is assumed to be uniform in each 
fragment when the fragmentation has come to the end. 
Fitting the theoretical fragment length distribution to 
the experimental one in the Kelly-Tyson equation 
where the probability density function f(cy) where cy is 
the fibre stress replaces the fibre strength finally gives 
r. As Miwa and Fraser work on glass-thermosets and 
glass-thermoplastics, respectively, their results cannot 
be compared. 

In a series of six papers on the fracture of metal 
matrix composites, Ochiai and Osamura gave 
another version of the multiple fracture process simu- 
lation [5, 6]. Again, a random generator is used to 
attribute the Weibull distributed strengths to the fibre 
chain divided into a number of elements. In their 
analysis, several modes of deformation, representative 
of the metal matrix they are dealing with, are intro- 
duced and the interfacial shear strength is assumed to 
be higher than the shear yield stress of the metal 
matrix (no debonding). Experimental and simulation 
data are well matched in terms of the number of 
fracture sites or average critical ratio as a function of 
the fibre volume fraction (fibre diameter against coat- 
ing thickness ratio). In a later work, Ochiai and 
Osamura applied the same model to metal fibres 
covered with a brittle fracturing coating; again, no 
debonding was assumed to occur [9, 10]. 

The aim of the present paper is to extend the pre- 
vious simulations to the case of the carbon fibre resin 
systems of Part 1 [1] with the introduction of some 
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friction at the fibre-matrix interface once the de- 
bonding has occurred. The pull-out strength deter- 
mined on single fibres has been taken as the criterion 
for debonding. 

2. Basic assumptions 
The fibre has been assumed to be linear elastic with 
a strength that obeys a two-parameter Weibull distri- 
bution function. In this first version of the model, the 
resin matrix was not considered to deform plastically 
and the Young's modulus is presumed to perfectly 
describe its properties. 

Owing to the pronounced anisotropy of the carbon 
fibres and the strong thermal mismatch between fibre 
and resin, the thermal stresses, that give their full effect 
on the single fibre composite geometry, affect the 
stress-transfer conditions very significantly, especially 
when friction is effective. Another consequence is that 
the fibre is put initially on axial compression so that, 
when tension is applied, the first failure occurs at 
a strain which is delayed by a corresponding quantity. 
Thermal residual stresses have been calculated ac- 
cording to Eshelby [12] for an elastic model. 

Two conditions of stress transfer at the interface, 
namely elastic stress transfer up to the interface failure, 
then stress transfer by friction, have been combined 
into a mixed mode. They are all illustrated in Fig. 1. 

For elastic stress transfer (Fig. la), at low applied 
loads, the matrix deforms elastically in shear. The Cox 
expressions 1-13] of stress equilibrium have been used, 
giving the following equations for the fibre tensile 
stress cy and the matrix shear stress ~ respectively 

G(x) = ~ o E f ( 1  c o s h [ 3 ( � 8 9  
cosh 13�89 (1) 

where ~o~ is the specimen deformation, Ef the fibre 
Young's modulus, x the stress transfer length (elastic) 
and 

~2 _ 2Gm (2) 
Efr~ In (R/r 0 

where G m is the matrix shear modulus, rf the fibre 
radius, and R the matrix equivalent radius. 

rf /s inh[~( �89 
Te(X) = E~gf~- [~  CO~-~  X)) (3) 

where xr is the elastic shear stress, o is a maximum for 
x = I/2, where 1 is the length of the fibre piece. Con- 
versely, zo is a maximum for either x = 0 or x = l at 
the fragment ends. Letting x' be the stress transfer 
length for which the fibre strain differs from ~ only by 
a very small quantity 8 gives 

1 1 
x' = ~ l n g  (4) 

The stress transfer length x' depends only on the 
elastic properties and geometrical characteristics of 
the system. 

If there is no bonding at the interface, shear is 
limited by friction (Fig. lb) and given by 

"~f = IxP (5) 
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Figure 1 Stress profiles along a fragment: (a) elastic case, (b) friction, 
(c) combination of modes. 

where zf is the friction shear stress, Ix the coefficient of 
friction and P the radial pressure on the fibre which 
depends on the overall deformation of the specimen 
by the Poisson effect and is calculated by the same 
equations as the residual thermal stresses [14]. c~(x) is 
given accordingly by integration over the distance x. 
In the central part of the fragment, where the elastic 
solution would give x < xf, elastic stress transfer is 
recovered. As the Poisson contraction of the fibre 
decreases linearly with the fibre tensile stress, P is not 
uniform and zf should be highest at the fragment ends. 
If xf is taken as a constant along the fibre has been 
verified to be within 5% of the expected value. 

A combination of the two preceding modes gives 
the stress profile of Fig. lc: the elastic stress transfer is 
limited by the ultimate debonding strength %. At the 



fragment ends, where z > Xu, this mode is now re- 
placed by friction with z = 12f. When moving towards 
the middle of the fragment, elastic stress transfer is 
recovered as soon as the computed elastic solution 
gives z e < ~u. The mean shear stress z m is the average 
value of z along the half fragment. 

This combination of two modes of stress transfer 
has already been suggested by Piggott [15] who dis- 
cussed the mechanisms of pull-out of weakly bonded 
fibres. 

Even if not obvious in the representations of Fig. 1, 
stress transfer may involve the two modes unsym- 
metrically and the point where z = 0 may not coincide 
with the fragment mid-point [14]. The shear profile is 
calculated for each fragment to satisfy the equilibrium 
equations and the boundary conditions. 

The criterion z u is taken as equivalent to the pull- 
out strength, independently determined from experi- 
ments where fibres are extracted from a resin matrix. 
According to D6sarmot et al., leaning on a former 
analysis of the pull-out by Greszczuk, ~u is given as the 
limit of the pull-out strength when the embedded 
length of fibre tends to zero [16, 17]. 

3. Computer  simulation 
The fibre of initial length Lf is divided into n elements 
of length L m and average strength C~R(Lm). This 
strength is determined from the extrapolation down to 
L m of the strength against gauge length relationship 
using the parameters of the Weibull distribution cal- 
culated for the fibre. The number of elements is cur- 
rently 2500, that is L m = 4 ~tm for an initial 10 mm 
long fibre. 

To each element i t, i z . . .  i, is affected randomly 
a strength Og~) given by 

__ (yR(Lm) [ i n ( 1  1 - ~l/m 
ORti) s +1 )  -- R(i)fJ (6) 

where o R is the fibre rupture strength, m the Weibull 
shape parameter of the fibre and R(i) a random num- 
ber giving the link i its strength r The result is 
a fibre with a random distribution of flaws and corres- 
ponding element strengths. 

The fibre is now considered to be surrounded by the 
matrix with proper residual thermal stresses. De- 
formation is introduced by increments to the specimen 
up to the fibre failure at the first critical flaw. For each 
step of the deformation, the radial pressure on the 
fibre is calculated. When the fibre fails, and for each 
new failure at increasing deformations, the elastic 
solution is first computed taking for zero, on both 
newly created fibre ends, the transfer length at con- 
stant shear stress (no friction). Then 

(i) values of z e > zf in debonded parts are replaced 
by zf; 

(ii) for values of % > z u in bonded parts, the trans- 
fer length at constant z = xf is given an increment. 

After each of these Steps, the stress state is computed 
again as many times as the above conditions can be 
satisfied. 

As mentioned before, since the non-symmetry of the 
fragment stressing mode has to be maintained, the 
point along the fragment where the shear changes its 
sign must be found first and the program provides two 
separate parts to calculate the above solutions on each 
side of the zero-shear position. Full details on the 
organigram have been given elsewhere [14]. 

Once the shear profile has been determined at each 
step for all fragments, the corresponding fibre tensile 
stresses are calculated and compared to the actual 
strength of the remaining unbroken elements. Again, 

(i) if o > Og~0, a new failure occurs and the above 
procedure is repeated from the very start; 

(ii) if cy < oR~i), the program stops and the final 
values are calculated: mean fragment length lm, critical 
fragment length I c (=  4/m/3), strength of the fibre at lo 
and, finally, the mean transfer shear stress z m. 

Typical displays of the results at various times are 
presented in Fig. 2 for the initial 10 mm long fibre and 
a 1 mm long detail. The initial unbroken fibre is 
shown in Fig. 2a: shear due to the axial compressive 
residual stresses is present only at the extremities of 
the fibre. In the upper part of the representation of the 
10 mm fibre, the "cloud" of the randomly distributed 
element strengths has been made visible. In Fig. 2b, for 
some deformation of the specimen, the weakest ele- 
ment has failed and elastic stress transfer takes place 
on both sides of the broken element. 

The final situation when the program has just 
stopped (no more fibre failure or "saturation" state) is 
represented in Fig. 2c and d with % = 60 and 
130 MPa, respectively. In Fig. 2c, stress transfer has 
been achieved mainly by friction, with its easily recog- 
nizable rectangular shear stress and triangular fibre 
tensile stress profiles. The fibre is almost completely 
debonded (black lengths). In Fig. 2d, for a system with 
a very good fibre-matrix bonding strength, the stress 
profiles are typical of a combined elastic-friction 
stress transfer with large (white) lengths where the 
fibre-matrix bond did not break. 

4. Results 
4.1. Input values 
The relevant input values for the fibre, resin and inter- 
face characteristics are summarized in Table I for six 
fibre-resin systems. All of them have been experi- 
mentally determined except for the fibre properties in 
the transverse direction (Poisson's and thermal expan- 
sion coefficients) and the fibre-matrix friction coeffi- 
cient for which estimations reported in the literature 
have been used. 

The fibre strength distributions were based on data 
determined according to the procedure described in 
Part I of the paper and extrapolated down to 4 ~tm 
(length of one link) using the Weibull transformation 
expression. For  the matrix, R, in Equation 2 is taken 
as the equivalent radius of the resin specimen reduced 
to a cylinder. 
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Figure 2 Results of the simulation: (a) initial state, (b) first fibre breakage, (c) final state (weakly bonded system, ~u = 60 MPa), (d) final state 
(strongly bonded system, ~. = 130 MPa). 

The fibre-matrix friction coefficient is a matter for 
discussion. In most carbon-epoxy systems, very high 
strengths are experienced in the pull-out test; and the 
elastic energy stored in the free length of fibre is high 
enough to let the embedded part be extracted sud- 
denly without any control, which prevents the friction 
coefficient being calculated as Chua and Piggott [15] 
did for other systems. Based on these authors' data, 
a constant value of 0.9 was introduced for all systems 
throughout the present work. As it will be discussed 
below, the point is of importance for Zm computation. 
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4 . 2 .  S i m u l a t i o n  a g a i n s t  e x p e r i m e n t  
c o m p a r i s o n  

Final results are compared in Table II for the six 
carbon-resin systems. Experimental values of l~ and 
~m are the average of five tensile specimens. Agreement 
between both sets of data is observed. As it will be 
discussed in the next section, 1~mc in Table II is more 
representative of the fragmentation process as the 
tensile strength of the remaining fibre pieces is con- 
tinuously recalculated at each step of the program. 
Since, however, experimentally determined ~m refers to 



T A B L E  I Materials characteristic input values 

T300 T800 AS4 

build-up in the fibre. This is confirmed by the stress 
profiles and number of broken elements in Fig. 2c 
and d. 

ElL (GPa) 230 294 220 
EfT (GPa) 18 23 18 
VfL r 0.26 0.26 0.26 
vfr T 0.39 0,39 0.39 
m 11.5 7,5 4.1 
cr o (MPa) 3907 7543 4100 
rf (10 _6 m) 3.50 2.50 3,63 
afL (10-6~ -1) -- 1 -- 1 -- 1 
afT (10-6 ~ -1 ) 19 19 19 

Araldite Narmco Narmco 
LY556 5208 5245 

E m (GPa) 2.70 3.85 3.95 
v~, 0.45 0.35 0.35 
R (10 -3 m) 2 2 2 
a m (10-6~ -1) 55 50 50 
Tr (~ 140 180 180 

%(MPa) r.(MPa) 

T300 UT/LY556 60 T800 ST/LY556 50 
T300 UT/5208 130 T800 ST/5245 103 
T300 ST/5208 150 AS4 ST/LY556 67 

L and T refer to the axial and tranverse directions respectively f and 
m refer to the fibre and the matrix respectively 
v Poisson's ratio 
T~ curing temperature 
~o Weibull scaling factor 
a coefficient of thermal expansion 

the tensile strength of the fibre at its final length lc, 
there is no alternative but to compare ~m values. 

Together with the interface parameters lo and Zm, 
the specimen deformation at two characteristic stages 
of the fragmentation process have been tabulated: 
(i) at the first failure of the fibre, where the differences 
between the observed rupture strain and that of a fibre 
out of the matrix are to be attributed to the residual 
thermal stresses and (ii) at the outset of the debonding. 
It is quite noteworthy that, with the T800 fibre, de- 
bonding occurs as early as the first fibre failure. This is 
in accordance with both the relatively high strain- 
to-rupture of the fibre and the relatively weak bonding 
strength of the T800-resin pairs. 

As the difference between the first two columns 
gives an indication of how early the debonding starts, 
it follows, when the r m s are compared, that friction is 
not as effective as elastic transfer for the stress to 

5. Discussion 
Owing to the above simulation, the relative influence 
of the various parameters could be studied 
thoroughly. This influence is very dependent on the 
stage of the process that is referred to, namely elastic 
stress transfer or stress transfer by friction, both re- 
gimes being separated by the threshold of the 
fibre-matrix debonding. 

Whenever the elastic transfer takes place, the stress 
transfer length x' of Equation 4 is a function of 
(Ef/Gm) 1/2 when replacing [3 by its value in Equation 2. 
The critical length lc, which is currently computed 
when the fragmentation has been completed, differs 
from x' as the fibre strength distribution is now in- 
volved in the simulation. Plotting lc/d as a function of 
(Ef/Gm) 1/2 thus gives the line of Fig. 3, which fully 
supports the previous statements of Galiotis et al. [18] 
for fibres of various diameters or Nardin et al. [19] for 
resins of various moduli respectively. Fig. 3 refers to 
a fictious system with % = 200 MPa while elastic 
stress transfer is limited by debonding in actual sys- 
tems, cf Table II. 

As soon as friction is superimposed to the elastic 
stress transfer, the effect of changing the matrix 
modulus becomes more complex. The Fig. 4a and b 
give typical computed data of ~m as a function of the 
Young's modulus of the matrix for rn---50 and 
150 MPa respectively and four values of the friction 
coefficient. Here again, the situations refer to the final 
state of the fragmentation process. As expected, the 
effect of changing ~t can be made out only whenever 
debonding has occurred, which happens very early 
(distinct plots from the very start) for ru = 50 MPa but 
very late (mingled plots up to E m = 3 GPa) for 
Zu = 150 MPa. Referring back to Table II, the systems 
4 and 3 are representative of these two situations, 
respectively. That the good agreement observed in 
Table II may be attributed to a properly selected 
coefficient of friction should not be ruled out. 

Anyway, the present simulation is not completely 
free of shortcomings, some of them being discussed 
below. 

(i) Once the fibre-matrix interface has failed, the 
crack is likely not to propagate in a stable way as it 

T A B L E  II Simulation/experience data comparison (l~ in gm; T m in MPa) 

Simulation Experience 

System e(%). ,8(%)b lc ,i. m Trnc /c Zm 

1 T300 UT/LY556 2.16 2.35 
2 T300 UT/5208 2.26 3.60 
3 T300 ST/5208 2.40 4.25 
4 T800 ST/LY556 2.59 2.59 
5 T800 ST/5245 2.86 2.86 
6 AS4 ST/LY556 - -  - -  

608 
342 
289 

1128 
662 
941 

25 
46 
55 
16 
28 
18 

27 
53 
68 
21 
33 

579 
359 
300 

1290 
558 
580 

24.9 
47.6 
59.3 
14.0 
36.3 
51.0 

first fibre rupture 
b debonding 
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Figure 3 Results of the simulation: influence of the constituents 
moduli  ratio on the critical aspect ratio (strongly bonded system). 
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Figure 4 Results of the simulation: effect of the matrix Young 
modulus  on the interfacial transfer shear stress for some values of 
the friction coefficients: (a) Weakly bonded system (% = 50 MPa), 
(b) strongly bonded system (% = 150 MPa). ( 1  IS = 2, x ~t = 1.5, 
+ Is = 1,.IS = 0.5). 

does in the model where links are progressively dis- 
charged for each debonding increment, see Section 3. 
The unstable crack propagation is confirmed by the in 

situ video monitoring of the mechanical test. The 
penny-shape cracks that form in the matrix normally 
to the broken fibre are not taken into consideration, 
but should perturb the stress building at the fragment 
ends. 

(ii) The fibre strength distributions are based on 
linear extrapolations from experimental measure- 
ments at millimetre gauge lengths down to the length 
of one link by means of the Weibull statistics. That 
may be an oversimplification of the strength against 
length relationship. As reported above, that could 
explain why the simulation fails for fibres of low 
Weibull modulus (AS4). 

(iii) Finally, the viscoelastic properties of the resin 
matrix are ignored in this version of the model on 
behalf of Young's modulus only. One of the various 
implications is that the calculated maximum elastic 

1 9 4  

shear stress "~max may possibly exceed the matrix yield 
shear stress, q~y determined on plain resin specimens. 
Indeed, typical values for the most efficient system 
(T300 ST/5208) are % = 150 MPa while z r has been 
found to be 75 MPa for plain 5208 from rail-shear 
tests [20]. The various xs are not, however, on a equal 
footing as far as fragmentation is concerned: "fy is 
associated to the macroscopic properties of a large 
volume of material while ~u refers to a small area of 
fibre surrounded by the resin. Anyway, the significa- 
tion of x u has been discussed elsewhere [17]. 

On the contrary, with the present model, it is pos- 
sible to correct for some aspects of the fragmentation 
process that otherwise would be disregarded: in the 
multiple rupture process, the fibre breaks progress- 
ively and the strength of the remaining fibre pieces 
continuously increases (volume effects as well as elim- 
ination of the most critical flaws) whereas, to calculate 
the final Xm, experiments make use of the fibre tensile 
strength originally determined once for all from tensile 
tests at various gauge lengths. A systematic bias is thus 
introduced in the experimental values of x~. 

A second bias is related to the stress profile along 
the fragments: the most critical flaw may be located in 
the ascending part of the stress profile and thus, in 
a way, protected against failure which eventually oc- 
curs at the maximum stress on a less critical flaw. 

Allowance is made for both deviations in the com- 
puter simulation, giving the ~r,c values, while it cannot 
be in the experimental based ~m determinations. Both 
have been indicated in Table II. 
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